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In this paper different procedures for treating artificial boundaries are. analyzed, and 
it is shown that many commonly used methods give bad results. A new procedure is de- 
veloped for the case where the asymptotic behaviour of the coefficient matrices is known, 

1. INTRODUCTION 

Many physical problems require the solution of partial differential equations on 
some infinite domain 52 with boundary &!. An example is given in fig. 1. For compu- 
tational reasons 52 is replaced by a finite domain Qn, and the problem arises to specify 
boundary conditions at the artificial boundary B2 . Consider, for exampIe, the differ- 
ential equations for a nonviscous fluid which at subsonic speed leaves 52, through the 
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FIGURE 2 

boundary B, . Then there is one characteristic which points back into the region ~2, 
and therefore one boundary condition has to be given. In general, no detailed knowl- 
edge of the solution on B, is given and other principles have to be applied. For 
example, if one solves the problem by a difference approximation then one often uses 
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upstream differencing on B, for all the dependent variables (see for example Roache 
[4]). This procedure is sometimes combined with overspecifying the solution on the 
boundary Bl . 

Recently, B. Engquist and A. Majda [I] have proposed another principle, namely, 
to specify the boundary conditions on B, in such a way that no reflection takes place. 

In this paper we want to investigate when these principles garantuee that the solution 
of the simplified problem is close to the solution of the original one. A necessary 
condition for this is that in Q - Q, the solution of the original problem only changes 
slowly with respect to space and time. Therefore we can linearize the problem and 
we assume that the linearized equations represent a hyperbolic first order system. This 
is true for ideal flow problems. 

In the next section we consider the model equation 

au/at = h/ax, x > 0, t > 0, 

44 0) = f(x) for t = 0, 

on the half line 0 < x < co and approximate it by 

(1-l) 

au/at = au/ax, O,<x<a, tZ0, 

v(x, 0) =f(x) for t = 0, 
(1.2) 

on the finite interval 0 < x < a, The last problem is well posed if we specify boundary 
conditions at x = a (but not at x = 0). 

We solve (1.2) by the Lax-Wendroff difference scheme. As boundary conditions 
for the difference approximation we have a number of different possibilities. 

a) For x = 0 we either specify v, for example, 

v(0, t) = 0, 

or we use an extrapolation procedure 

(hD+)P v(0, t) = 0, hD+v(O, t) = v(h, t) - v(0, t). 

For p = 2 this is the usual upstream differencing. 

b) For x = a we have the analogous possibilities. 

We obtain the following results. 

1. For x = 0 one shall not overspecify, i.e. v shall not be given. Upstream 
differencing gives good results. 

2. Iff(x) M const. for x > a then 

hD_v(a, t) = v(a, t) - v(a - h, t) = 0 (1.3) 

can be used. Upstream differencing at x = a can give completely wrong results. 
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3. The principle of no reflection at x = a is useful only if f(x) w const. for 
x 3 u. 

In section 3 we show that the corresponding conclusions hold for systems 

au/at = A avjas 

where A is a constant matrix. 
In section 4 we make a thorough investigation of systems with variable coefficients 

atljit = A(X, t) au/ax. 

We show that extrapolation procedures or the principle of no reflection is useful 
only if A(x, t) is essentially independent of x for x 3 a, or that the solution is highly 
oscillatory in time. 

If one knows the asymptotic behavior of A(x, t), for example, 

A@, t) = A, + x-~A,(x, t) 

then one can derive new principles, which are useful for steady state calculations. 
The last section is concerned with system 

au/at = A au/ax + B aqay 

in two space dimensions. The above principles are useful if the influence of B &/ay 
is small, i.e. the problem is essentially one dimensional. For cases where this does not 
hold we again construct new principles. 

In many applications the time dependent equations are used to obtain the steady 
state solution. We shall also study the effect of our boundary conditions on the 
convergence rate to the steade state. 

2. THE MODEL PROBLEM 

We want to solve the differential equation (1.2) by the Lax-Wendroff scheme. Let 
k > 0, h = a/N, N natural number, denote the time step and the space step respec- 
tively. The gridpoints are given by x, = uh, t, = nk, v = 0, I,..., N; n = 0, 1, 2 ,...; 
and the gridfuntions by wVn = w(xV , t,). We approximate (1.2) by 

w;+’ = (I + kD, + ; D+D-) wvn, O<v<N, 

wo = f 
(2.1) 

Y “7 

where 

2hD,w, = w,+~ - w,-~, hD.+.w, = M’,+~ - w,, hD_w, = IV, - w,-~, 
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denote the usual centered, forward and backward difference operators respectively. 
We assume that k/h < 1, which grantuees that the approximation is dissipative. 

We first study the case that proper boundary conditions 

(hD+)“w,” = 0 ,p 3 1, M’Nn = g (2.2) 

are given. Then the approximation (2.1), (2.2) is stable (see [2]) and in every finite 
time interval the solution of (2.1), (2.2) converges for h --+ 0 to the corresponding 
solution of (1.2) which satisfies the boundary condition 

v(a, t) = g. (2.3) 

We now study the behaviour of (2.1), (2.2) for t -)- co with fixed k, h. We have 

THEOREM 2.1. Let k, h be$xed. The solutions of (2.1), (2.2) converge exponentially 
fast to the steady state solution 

1V" = g, v=O,l N ,***, (2.4) 

mn-+m. 

Proof. We write (2.1), (2.2) in matrix form 

E”+l = QiV’ + 6, b = (0, 0 ,..., 0, g)’ (2.5) 

where W = (NJ,, , . . . , wN)’ is a column vector and Q an (N + 1) x (N + 1) matrix. 
It is well known that the solutions of (2.1), (2.2) converge to the steady state solution 
(2.4) if and only if the eigenvalues z of Q satisfy 1 z j < 1. The eigensolutions 4 have 
the form 

where K~ , K~ are the roots of 

ZK = K + &i(K’ - 1) + +h’(K - 1)’ 

C$ must satisfy the homogeneous boundary conditions (2.2), i.e. 

Ul(K1 - I)p + U2(K2 - 1)’ = 0, UlKlN + C&‘” = 0. 

This system has a nontrivial solution if and only if 

(2.6) 

(K1 - I)PK,N = KlN(K2 - 1)‘. (2.7) 
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An easy calculation shows that for sufficiently small h the relations (2.6) (2.7) imply 

IZI <I-s,s>o independent of h 

for all eigenvalues of Q. This proves the theorem. 
We next investigate the case where we use extrapolation also at x = a, i.e. we 

replace (2.2) by 

hD+won = hD+w$-l = 0. (For simplicity we set p = 1.) (2.8) 

In this case we have 

THEOREM 2.2. Assume that v(x, 0) =f( x is a smooth function with df(a)/dx = 0. ) 
Then the solutions of (2.1), (2.8) converge for h -+ 0 to the solution of (1.2) which 
satisfies the boundary condition 

Proof. Let 

44 t) =f(a) (2.9) 

~5,” = D w ,z + VP v = 0, 1, 2 ,..., N - 1. 

Then zCVQ is the solution of (2.1) which satisfies the initial and boundary conditions 

zzyo = D+.fi , v = 1, 2 ,..., N - 2; Go” = zz;wl = o, iz = o, 1, 2 ,... . 

S. Parter [3] has shown that the zEVn are uniformly bounded and for any 6 > 0 

SUP I Y(-G > t,) - zz,n j -+ 0 as h--f 0. 
6<x,Sa.0St,ST 

(2.10) 

Here y is the solution of (1.2) with initial and boundary conditions 

y(x, 0) = df(x)/dx, y(a, t) = 0 = df(a)/dx. 

Therefore we have also that 

lj~ Dow;-, + = y(a, t,) = 0, !&I hD+D-w”N_, = 0 

and by (2.1) 

ljr$ 
w;LN\ - w;-1 

k 
= 0, + i.e. l,‘z wlti_, =f(a>. 

Now 

N-2 N-2 

win = - c D+w,“h - IV;-~ = - 1 6% - IV;-~ 
L,=j ,,=j 
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and by (2.10) 

8,,lff<t <T I NX” 7 t) - u.(-% > t)l + 0 as h -+ 0, 
. \ n’ 

(2.11) 

v(x, t) is the solution of (2.1) which satisfies the boundary condition (2.9). Also, for 
0 ,( xv < S we have 

1 v(x, ) t) - w(x, ) t)l < I v(2, t) - w(x”, t)l + / v(x, ) t) - v(2, t)i 

+ [ ~(2, t) - w-(x,, t)l < const. 6, (2.12) 

where f = x,, is a gridpoint with S < x, < 6 + h. This proves the theorem. 
For steady state calculations we have 

THEOREM 2.3. ForJixed k, h the scheme (2.1), (2.8) is weakly convergent as n -+ co 
i.e. the limit function woo depends on the initial values. 

Proof. We write (2.1), (2.8) again in the matrix form (2.5). An easy calculation 
shows that z = 1 is a simple eigenvalue corresponding to the eigenfunction d = 
const.. All the remaining eigenvalues satisfy again I z 1 < 1 - 6 < 1. This proves the 
theorem. 

Thus the steady state depends on the initial function f(x). If we replace f(x) by 
f(x) + const., then also the steady state changes by this constant. Observe that the 
rate of convergence is the same as in theorem 2.1. 

As a third alternative we consider 

wOn = g, hD+wnN_, = 0, (2.13) 

i.e. the boundary values are given on the “wrong side”. This corresponds, for example, 
to the subsonic case in fluid mechanics where all the variables are prescribed on the 
inflow side. In a similar way as theorem 2.2 on can prove 

THEOREM 2.4. Assume that the conditions of theorem 2.2 are satisjed. Then the 
solution of (2. l), (2.13) converges for h + 0 on anyjnite domain 6 < x < a, 0 < t ,< T 
to the solution of (1.2), (2.9). 

For steady state calculations we have 

THEOREM 2.5. For fixed k, h the solution of (2.1), (2.13) converges for n - co 
to the unique steady state w,” = g, v = 0, 1, 2 ,..., N if and only if N is odd. Also, the 
speed of convergence is extremely slow. 

Proof. The condition (2.7) for the existence of a nontrivial solution becomes now 

(K1 - 1) Kf”’ = KF-‘(Kp - 1). (2.14) 
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Using (2.6) and (2.14) an easy calculation shows that there is one eigenvalue of the 
form 

zm 1 +(-l)NA+$(&+)N-l, h=k/h, 

while all the other eigenvalues satisfy 1 z / < 1 - 6 < 1. Therefore, we obtain growing 
solutions if N is even, but converging solutions if N is odd. The rate of convergence in 
the last case is determined by the above eigenvalue, i.e. it is extremely slow. Further- 
more, the solution will contain oscillatory components near the boundary. 

For converging solutions the steady state is given by 

W m = UIK1” + UZK2” Y (2.15) 

where K~ , K~ are the roots of 

K2 - 1 f x(K - 1)” = 0, i.e. K1 = (1 - x)/(1 f A), K2 = 1 

wVco must satisfy the boundary conditions (2.13). Therefore 

01 + (32 = g, (TIKy-l(K1 - 1) + (T2KF-1(K2 - 1) = 0 

which gives us u1 = 0, u2 = g and the theorem follows. 
By theorem 2.4 the solution of (2.1). (2.13) converges to the solution of (1.2), (2.9) 

on every finite time interval. Since v(x, r) =f(u) for t 3 a this seems to indicate a 
contradiction to the result of theorem 2.5. However, it can be explained in the following 
way. For fixed values of k, h, a typical calculation will after a relatively short time 
give a good approximation of u(x, t) =f(a>, but it will later change very slowly and 
finally converge to g. The following calculation illustrates this point. We compute 
the solution of (2.1), (2.13) on the interval 0 < x < 1 using 

W”O = fv = sin X, , won = hD+wlEr_, = 0 

as initial and boundary conditions. The figures show w(2/3, t) as a function of time in 
two different scales. It is very tempting to consider the solution as a steady state after 
a relatively short time. However, as can be seen from fig. 3 and fig. 4, the solution at 
t = 2 has nothing to do with the final steady state. 

We can also use higher order extrapolation at the boundary 

(hD+)” won = (hD+)” w;;_, = 0, p > 1. 

The condition (2.7) for a nontrivial solution becomes 

(K1 - 1)” (K2 - 1)” (K2”-” - K,“-“) = 0 

(2.16) 

and there is an eigenvalue z = 1 of order p which has only one eigensolution. There- 

@r/30/3-3 
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fore there are solutions which grow like t”-l and for steady state calculations no 
convergence will occur. 

For calculations on a finite time interval, we can, using the same technique as in 
theorem 2.2, prove that the solutions converge for h -+ 0 to a solution of (1.2) which 
satisfies the boundary condition 

a%(a, t>/axp = 0. 

FIGURE 3 

80 

FIGURE 4 

The results in this section can also be generalized to equations 

au/at = o1 au/ax, a>0 

and difference schemes 

w:+l = (I + akD, + flk’D,DJ wvn. 

Stability for the Cauchy problem requires 

p < $,F < 215 where X = aklh. 
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We note in particular, that for the case of overspecification at x = 0, we get conver- 
gence to a steady state if and only if at least one of the following conditions is satisfied. 

1. Nis odd, 2. x <2/I. 

Therefore, by strengthening the von Neumann condition, we can avoid the restriction 
on N. However, the speed of convergence is still extremely low. 

3. DIFFERENCE APPROXIMATIONS FOR SYSTEMS WITH CONSTANT COEFFICENTS 

In this section we will make a few comments on the numerical solution of systems 

afyat = A aqax, O<x<a 

where fi = (C(l),..., P))’ is a vector function with n components and A a constant 
it x n matrix. We assume that A can be transformed to diagonal form and that the 
eigenvalues of A are real and nonzero, i.e. there exist a nonsingular transformation S 
such that 

A = WAS = ($ x, 

where 

A, 0.. . . . .() 

A= 0 A2 o--*0 
1 

i i 

>() 
, A, = 

. . . . . . . . . . . 

0 * - . * * * 0 A,, 

(3.1) 

are positive and negative definite diagonal matrices respectively. 
The Lax-Wendroff scheme is given by 

zZl;+’ = (I + kAD, + $k2A2D+DJ zCvm, O<v<N. (3.3) 

To determine its solution we have again to specify boundary conditions at x = 0 and 
x = a. If the boundary conditions are of the same type for all components of 6, for 
example 

-n - wo =g, hD+z2;-, = 0, (3.4) 

then all the results of the last section apply. We need only to introduce new variables 
w, = S-%J to obtain 

w;+l = (I + kAD, + ;k”~“D+DJ wvn, O<v<N 
(3.5) 

won = g, hD+wnN_, = 0 

i.e. n decoupled problems of type (2.1), (2.13). 
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This transformation can also be used to discuss general boundary fconditions. For 
example, specify at x = 0 correct boundary conditions and extrapolate at x = a all 
variables. Then, after transformation, these boundary conditions become 

<d’r = R,(dY + (gX (hD+Y (w$ = Q(hD+)" (w;)~, 
(3.6) 

hD+w;;_, = 0. 

Here WI, uJ1 correspond to the partition of A and R, Q denote (n - r) x r and 
r x (n - r) matrices respectively. Then w converges to a solution of 

atqat = A au/ax (3.7) 

with boundary conditions 

~“(0, t) = R,v’(O, t) + g:(t), a+, tydx = 0. (3.8) 

By (3.7) the relation &I/ax = 0 implies ad/at = 0 and therefore 

?+(a, t) = vyu, 0). (3.9) 

Thus in steady state calculations the steady state depends on the initial values. 

4. GENERAL CONSIDERATIONS FOR PROBLEMS IN ONE SPACE DIMENSION 

In this section we consider hyperbolic systems 
aqat = A(X, t) agax 

with variable coefficients in the quarter space 0 < x < co, t > 0 where the matrix A 
depends smoothly on x, t. We assume that there is a smooth transformation S(x, t) 
such that (3.1), (3.2) hold for every fixed X, t. Then we can introduce new dependent 
variables u = S-Q and obtain 

au/at = A au/ax + B#, B = -s-layat + S-IA as/ax. (4.1) 

For t = 0 initial values 

4x9 0) = f(x), o<x<co (4.2) 

and for x = 0 boundary conditions 

~“(0, t) = R,u’(O, t) + g;‘(t), t>O (4.3) 

are given. Heref(x), g,!,‘(t) are smooth functions, ut = (uul,..., u(~))‘, ulI = (d7+11,..., 
u(“)) correspond to the partition of A, and R,, is an (n - r) x r matrix. Thus the 
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number of boundary conditions is equal to the number of characteristics which enter 
the region x > 0, t 3 0. 

If we want to solve the above problem numerically we have to replace the infinite 
interval 0 < x < cc by a finite one. There are two ways to do this. 

1. Determine some transformation of the independent variable x which transforms 
0 < x < co into 0 < x < a. 

2. Replace 0 < x < co directly by 0 < x < a and find at x = a a function g?(t) 
such that the solution of 

au/at = A au/ax + Bv, Odxda, t20 (4.4) 

with initial conditions 

4x, 0) = .fw O<x<a (4.5) 

and boundary conditions 

u”(o, t) = &v’(O, 0 + go’(t), v’(a, t) = gll(t), t 2 0 (4.6) 

differs at most slightly from the solution of the original problem (4.1)-(4.3). 
Connected with the above equations is the following problem. Consider the system 

(4.1) 

ayjat = (1 aylax + BY, x b a, t>O (4.7) 

for x > a with initial values 

Yk 0) = f(x)~ x>,a (4.8) 

and boundary conditions 

y”(a, t) = g:‘(t). (4.9) 

We can express the solution u(x, t) of (4.1)-(4.3) with help of v(x, t) and y(.x, t). The 
following lemma is obvious. 

LEMMA 4.1. 

u(x, t) = I 
4x, I>> x<a 
Y(X, th x > a’ t 2 0, (4.10) 

if and only if 

v’(a, t> = gll(t> = 3% 0, v”(a, t) = g:‘(t) = y”(a, t). (4.11) 

We can state this result in another way. Letf(x) be fixed. Then the problem (4.7)- 
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(4.9) has for every g:‘(t) a unique solution y(x, t). In particular, ~*(a, t) is uniquely 
determined by ~“(a, t) = g:‘(t). Thus there is a linear operator R,(t) such that 

Y’@, t> = Mt)Y1l(a, t) + b’(t). (4.12) 

Here b’(t) is determined byf(x) and R,(t) depends on ~~~(a, 5) for 0 < 5 < t. Assume 
that R, and b1 are known. Choose the function gll(t) in (4.6) such that 

We have 

~‘(a, t) = R,(t) ~“(a, t) + b’(t). (4.13) 

LEMMA 4.2. u(x, t) = u(x, t)for 0 < x < a, t > 0 ifand only if(4.13) holds. Thus 
(4.13) can be considered as the missing boundary condition. 

Proof. Assume that U(X, t) satisfies (4.13). Choose g:‘(t) in (4.9) such that y”(a, t) = 
g:‘(t) = ~“(a, t). Then by (4.12) and (4.13) also ~‘(a, t) = ul(a, t) and by lemma 4.1 
we obtain u(x, t) = U(X, t) for 0 < x < a, t 3 0. Conversely, if U(X, t) is a solution of 
(4.1)-(4.3) then it is also a solution of (4.7)-(4.9) and must satisfy (4.12). Therefore, 
if u(x, t) = U(X, t) for 0 < x < a, t > 0 then v(x, t) must staisfy (4.13). This proves 
the lemma. 

In general R,(t), b’(t) are very complicated. There are only some special cases where 
R, and b1 can be represented in a simple way. 

1. r = 0, i.e. all eigenvalues of A(a, t) are negative, i.e. all characteristics at 
x = a point out of the region 0 < x < a, t 3 0. In this case yn = y and the relation 
(4.12) is empty. Therefore U(X, t) does not need to satisfy any boundary conditions at 
x = a. 

2. r > 0 but A(x, t) = A(a) is a constant matrix for x 3 a. Then the trans- 
formation S is independent of x, t and B = 0 for x 3 a. Therefore we can compute 
the first r components of y(x, t) explicitely. They are given by 

yyx, t) = f (j)(x + x,t>, j = 1, 2,..., r; 

leading to 

y’j’(a, t) = “Pya + h,t), j-l,2 r. ,*a., 

The relation (4.12) holds with R, = 0 and b1 = (f”)(u + Xlt),...,f@)(u + A,t))‘. 
It is clear that z)(x, t) depends very much on the initial values for x > a. There is 

only one simple case, namely 

f(x) -fm = const. for x 3 a. 

Then (4.13) becomes 

uya, t) = &’ (4.14) 
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~‘(a, t) can also be obtained in a fairly simple way if we require only that B has the 
form 

(4.14) is equivalent with 

avya, tpx = 0, (4.14)’ 

because (4.14)’ implies &I+-, t)/at = 0, i.e. z$u, t) = ~*(a, 0) = fool. Thus the boundary 
conditions (3.4) (extrapolation of all the variables at x = a) can be used. 

Without restriction we can assume that fm = 0. Otherwise we would consider the 
function u” = ZJ - fm . Then also b1 = 0 and the relation (4.13) becomes 

II’@, t) = 0, for t 3 0. 

The last relation means that we set the characteristic variables associated with the 
“ingoing” characteristics equal to zero, or as B. Engquist and A. Majda [l] call it, 
that no reflection takes place at the boundary. Therefore this principle is useful if we 
subtract from the solution its constant state at infinity. 

3. f(x) = 0 for x 3 a, B # 0, but the solutions are highly oscillatory in time, i.e. 

y**(u, t) = g”(u, t) = eiw’+(t) 

where / w / > 1 and 4(t) is a smooth function. Assume, for simplicity, that rl and B 
do not depend on t. Then we can solve (4.7) by Laplace transformation. The trans- 
formed equations are 

sj = A dj/dx + B?, $“(a, s) = g”(u, s), 

which can be written as 

dg/dx = s(kl - s-V-‘B)$ j”(u, s) = $“(a, s). 

We want to solve this equation for 1 s 1 > 1. Then s-lklB can be considered as a 
perturbation of (1-l and in first approximation we can neglect B which leads us to the 
previous case. In general we can obtain the solution as an asymptotic series in s-l. 
Therefore also RI has this form. By using the inverse of the Laplace transform, (4.12) 
can be written as a relation between time derivatives of the solution. 

From now on we shall always make 

Asszfmption 4.1. f(x) 3 0 for x 3 a, i.e. b*(t) = 0 
Assume that A depends on x, t also for x > a. Then B # 0 and in general ~9, ylr 

are coupled and we cannot determine R,(t) without making detailed calculations of 
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~(x, t). Only if A(x, t) converges to a constant matrix A, as x + cc we can do better. 
We make 

Assumption 4.2. The matrix B(x, t) can be written in the form 

m, t) = 4(x) B,(& t> 
where b(x) is a scalar function with 

and 
s ,D I m c&t d c 

II B II = SUP I 4(x, t)l < 1. 
asz<m,t>o 

Here / B,(x, t)l denotes the maximum norm at the point x, t. 
Assume for example that A is of the form 

44 = A, + $ Al(x, t), x>a 

and that the eigenvalues of A, are all distinct. Then S is of the form 

Thus 

s = so + $ w, t>, i.e. B = -$ Bl . 

We need 

q4 = const./x2, s am I 4 I dx < const./a. 

LEMMA 4.3. Consider the system 

ay/at = LI 8yja.x + +(x)G(x, t) 

for x >, a, t > 0 with zero initial and boundary conditions 

Y(X, 0) = 0 for x > a y”(a, t) = 0 for t 2 0. 

Assume there is a constant X0 > 0 such that 

Then 

inf I Xj j 3 ho . r,x,i 

II Y II < c/A, II G!I, II Y II = “xl: I YCi) I. 

(4.15) 

(4.16) 

(4.17) 

(4.18) 
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Proof. We need to prove the estimate only for scalar equations 

am = X(X, 0 wax + +cw(x, t) 
with appropriate boundary conditions. Using the method of characteristics we obtain 

Therefore 

dy/ds = +(x)G(x, t), dtjds = 1, dx/ds = -X(x, t). 

I Y(x(s~>, t(so>>l = / /o’” 4(x(.9 W(s), t(s)) ds I G II G II .r^,” / dW)l ds 

< II G II j”= I WI I W4 dx d (c/U II G IL 0 

which proves the lemma. 
The last lemma gives us 

THEOREM 4.1. Assume that the assumptions 4.1 and 4.2 are valid and that (4.18) 
holds. If c/X, -C 1 then the solution of (4.7) can be obtained by the iteration process 

aY,+liat - A aYn+,iax = 44.4 4(x, t) yn 

Yn+1(X, 0) = 0, vt+& t) = s:‘(t), (4.19) 

n = 0, I,...; y,(x, t) = 0. 

Proof. Let y,,, = Y,+~ - yn . By lemma 4.3 

il Y,+, !I G WAd iin II, n = 1, 2,... 

and the convergence follows. This proves the theorem. 
In the usual way we obtain the estimate 

IIY -YY,I/ < f IlJll < * $ II Yz - Yl II = WCA)) 
us1 0 

and by (4.19) 

y1’(x, t) = 0 

ay:‘lat - A, ay:‘lat = 0, 
(4.20) 

Y%, 0) = 0, $(a, 0 = g:‘(t). 

Thus if we allow an error of order O(c/h,), extrapolation or the principle of no reflec- 
tion at x = u is appropriate. If this error is not acceptable then we have to compute 
yJ defined by 

a.&2 - (1, ay21px = +B,~Y:*, Y,‘k 0) = 0, (4.21) 
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where B12 is defined by 
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Then 

and we assume that this error is tolerable. 
If one is interested in the whole time dependent process then not much is gained 

because to compute ~:(a, t) as a function of g:‘(t) we have to)solve (4.20) and (4.21) 
completely. Thus one should instead make a so large that an error of order U(c/A,) 
can be tolerated. 

There is one exception. If c/l B,, j/ is small, i.e. the in- and outgoing waves are 
almost decoupled, then yzl is almost zero and the complete solution is essentially 
given by (4.20). In this case the principle of no reflection is appropriate. 

The situation becomes more favourable if we are only interested in the steady 
state solution, i.e. consider the case that 

Then for t + co 

Thus yZ satisfies in the limit the relation 

Therefore, by lemma 4.2, we should use for V(X, t) at x = a the boundary conditions 

u’(a, t) = cuya, t). 

Observe, however, that one has to know the asymptotic expansion of A in detail to 
compute C. 

5. PROBLEMS IN Two SPACE DIMENSIONS 

We start with an example. Consider the system 



349 BOUNDARY CONDITIONS 

on the domain 52 as given in fig. 1 or fig. 2. For t = 0 initial values 

4x7 Y, 0) = Nx, Y, % (x, Y> E Qn, t = 0, (5.2) 

and for (x, y) E afi boundary conditions are given. In particular we assume that on 
4 

NO, Y, t> = 4Y), t 2 0, x = 0, (5.3) 

and on B3 , B, 

4~ Y, t> = 0, (x, Y> E B, TV B, , t > 0. (5.4) 

Without restriction we can assume that B, , B, are given by x 3 a, y = 1 and 
x > a, y = 0 respectively. 

We want to determine the solution of the above on Q, only. Therefore we need one 
relation between U, v on B, . The boundary conditions (5.4) imply that for x > a the 
solution of our problem can be expanded in Fourier series 

m 
24 = C fi(x, w, t) sin 7r~y, 2) = f&(x, t) + 2 6(x, w, t) cos may. (5.5) 

w=l 0-l 

Introducing (5.5) into (5.1) gives us for x > a 

aqat = -aa6,1ax, (5.6) 

ad fi 0 a4 -1 
at ( 0 ) --+7r~(; ,‘)pi’, w-l,2 ).... -1 %x (5.7) 

For every fixed frequency w # 0 the system (5.7) is of the same form as the onedimen- 
sional problem (4.1) and the results of the last section apply. If we Laplace transform 
(5.7) with respect to t and we are only interested in solutions with 1 s 1 > j w j then 
we can use the same kind of asymptotic expansion as before. 

If 1 s / Q / w /, i.e. we are interested in quasistationary problems then we can replace 
(5.6), (5.7>by 

a6,lax = 0 (5.8) 

(5.9) ( 
+1 0 azl 
0 1 -+mq; ,')&=O, w-l,2 )..., -1 ax 

The solution of (5.9) is given by 

qx, w, t) z -e-wn(-d 6(a, w, t), 6(x, w, t) = e-wn+W(a, W, t), 

which gives us for x = a 

ii(a, 0, t) = -Q(a, w, t). (5.10) 
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Therefore we have determined the desired relation 

because if we know v then we can expand it in a cosine series and by (5.10) we obtain 
the sine series for U. This process can be performed numerically by using the fast 
Fourier transform. 

It is not necessary that the coefficients of (5.1) are constant. We can also consider 
systems 

aw 
( 
UY) -= 

at 0 -&,)I 2 + (up,, %Y g 

where the coefficients depend on y. The steady state solution can again be solved in 
terms of eigenfunctions 

zz = e+y(y), Real K < 0, 

which gives us the desired relation between u and v on B, . Whether this procedure is 
feasible numerically depends on how easy it is to compute the eigenfunctions and how 
many are needed to represent the relation between u and a. 

All the results can be carried over to general hyperbolic systems 

awlat = A, atvjax + A, awli+. 

For example, if we are only interested in the steady state then we can obtain the 
desired relations on B, between the components of w by solving the steady state 
equations 

A, awlax + A, aw/ay = 0 

in terms of eigenfunction expansions. 
We want to point out that there are problems in two space dimensions which can be 

transformed into one-dimensional form. Consider for example equation (5.1) on some 
domain Q containing the origin. We introduce polar coordinates by 

x = r cos 9 

y = r sin 0 

and obtain from (5.1) 

aw 
( 
cos e sin e 

1 
aMl 
-+i(- 

sin e cos e aw 
at = sin e - cos e ar cos e sin e 1 3i7 * 

Defining new dependent variables by 

( ~0~ 812 sin e/2 
w = sin e/2 - cos 812 ) u = T(@u 
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we get the equivalent system 

Therefore, if the initial data are such that U(T, 0, 0) is independent of 8, then U(Y, 8, t) 
is independent of 8 for all t, t 3 0. In particular, we get a nonreflecting boundary 
condition if UI = 0 is specified at all points on aQ. 
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